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For those cylindrically symmetrical one-particle problems which are separable in either prolate 
spheroidal or parabolic coordinates, a quantum mechanical constant of the motion and its classical 
analogue are independently derived and compared. The quantum mechanical constant of the motion 
is a sum of an operator depending only on the coordinate system chosen and possessing a simple 
physical significance and of a second operator uniquely linked with the special separable potential 
chosen. The superposition principle for separable potentials also holds for the corresponding operators 
mentioned before. This constant of the motion does not result from spatial symmetry but from separa- 
bility. It also must, however, be taken into account for the classification of energy levels depending 
on a parameter to avoid violations of the non-crossing rule. The formal theory given is applied to 
several special problems. 

Fiir diejenigen zylindersymmetrischen Einteilchen-Probleme, die sich in eUiptischen oder para- 
bolischen Koordinaten separieren lassen, werden eine quantenmechanische Erhaltungsgr6Be und 
ihr klassisches Analogon unabh~ingig voneinander abgeleitet und verglichen. Die quantenmechanische 
Erhaltungsgr613e ist jeweils die Summe eines Operators, der nur vom gew~ihlten Koordinatensystem 
abh~ingt und eine einfache physikalische Bedeutung besitzt, und eines zweiten Operators, der eindeutig 
mit dem gew~ihlten separierbaren Potential verkniipft ist. Das Superpositionsprinzip fiir separierbare 
Potentiale tibertr~igt sich auf die zugeh6rigen, eben genannten Operatoren. Diese Erhaltungsgr6Be 
folgt nicht aus der r~iumlichen Symmetrie. Sie muB jedoch bei der Klassifikation yon Energietermen, 
die yon einem Parameter abh~ingen, mitberiicksichtigt werden, um scheinbare Verletzungen der 
Nichtkreuzungsregel zu vermeiden. Die formale Theorie wird auf mehrere spezielle Probleme ange- 
wandt. 

Introduction 

The p r o b l e m  of classifying the electronic  states of a tomic  and  molecu la r  
systems with  several  e lect rons  and  of f inding the terms resul t ing from a given 
electronic  conf igura t ion  has  been solved by  several  authors .  The  most  elegant,  
g roup  theore t ica l  so lu t ion  of the la t ter  p r o b l e m  for molecules  was cer ta inly  
given by  Hansen  [1, 2]. All  so lu t ions  of this p r o b l e m  are essential ly based  on the 
concept  of the  spat ia l  symmet ry  group,  the largest  subg roup  of the full ro t a t ion -  
reflection g roup  O3 consis t ing  of ope ra t ions  which leave the H a m i l t o n i a n  in- 
variant ,  and  on  the p roper t i e s  of its i r reducib le  representa t ions .  

This  concept  of spat ia l  symmetry ,  however ,  fails to be efficient for some one- 
e lect ron problems.  "Acc iden ta l "  degeneracies  of energy terms occur  for the  two-  
and  th ree -d imens iona l  i so t rop ic  h a r m o n i c  osc i l la tor  and  for the hyd rogen  a tom;  
energy levels be longing  to  different i r reducib le  represen ta t ions  of the  spat ia l  

* Dedicated to the memory of Professor K. H. Hansen. 
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symmetry group coincide 1. In the H~--problem, the energy terms 2sag and 3dag, 
belonging to the same irreducible representation o -+ of the spatial symmetry 
group D~oh do cross in spite of the non-crossing rule. When an expression like 
Q/(r~. r2) (which preserves separability) is added to the two-centre Coulomb 
potential Z1/r 1 + Zz/r2, the energy levels 2s% and 3da o still cross [3]. This last 
example of degeneracy induced us to study separability, a common feature of all 
problems mentioned above, in order to try to relate it to a higher symmetry not 
included in spatial symmetry. Of greatest importance for our aim there proved 
to be those coordinate systems in which the solutions of the Schr6dinger equation 
separate completely in the spatial variables, but only partially in the separation 
constants (class B of Morse's classification [-5, p. 518]). The most important co- 
ordinate systems of this class are the (rotational) prolate spheroidal and the 
(rotational) parabolic systems. 

Cylindrically Symmetrical Potentials Separable in Prolate Spheroidal Coordinates 

1. Prolate spheroidal coordinates #, v, cp are as usually defined by 

rl ~-/'2 Ki -- K2 v - ~0 (1) 
# =  R R 

and are related to cylinder coordinates ~, q~, z by 

= a ] / ( #  e - 1 ) ( 1 - v  z) z = a # v  ~o=~o. (2) 

The most general cylindrically symmetrical potential energy V for which the 
Schr6dinger equation 

~2 v}  (3) { 
- T M - d +  z = ~ z  

separates in prolate spheroidal coordinates is of the form 

vl(#) + V2(v) 
V(#, v) = #2 _ v2 (4) 

according to Eisenhart [4] or Morse and Feshbach [-5, p. 661]. Let us first construct 
a classical constant of the motion and then return to quantum mechanics. 

An easy calculation shows: 
Canonical momenta Pu, P~, P~ which are conjugated to the variables #, v, q~ are 

#2 __ V2 
Pu = M a2 #2 __ 1 12 

#2 __ •2 

p~=Ma 2 l_v---T-f~ (5) 

P~o =Ma2 (#2 _ 1) (1 - v2)~b. 

1 H.V. Mclntosh gives an excellent survey in his paper "Symmetry and degeneracy" contained 
in the second volume of"Group theory and its applications", ed. E. M. Loebl, New York: Acad, Press 
1971. 



Separable One-Particle Problems 273 

C 

A B 
R = 2 a  

Fig. 1 

The Hamiltonian function for a particle with mass M and potential energy V is 

H(#, v, r  p,, p~, P~o) (6) 

= 2Mtr2(# 2 - v 2 )  ( # Z _ l )  p, + P~o + V  

(see, for instance [6, p. 178]). 
As the SchrSdinger equation with V given according to Eq. (4) separates, so 

does the Hamilton-Jacobi Eq. [4a] : 

( ~So 8So OSo) 
H g,v,~0; •# ,  Ov ' Oq~ = E  (7) 

for the characteristic function So(#, v, q~) = S + E.  t. With the ansatz 

So(#, v, ~o) = p~. q, + s , (#)  + s2(v), (8) 

where po is a first constant of the motion, we obtain from (7): 

(pZ-1)( dSl l 2 P~ + 2Ma2(VI(#)-E(pZ-1))=fl (9a) 
\ d# ] + #2_ 1 

(dS212 pZ +2M~2(V2(v)-E(1-v2))=-fl �9 (9b) (1-v 2)\ dv ] + 1 - v  ~ 

Note that fl is not uniquely defined by (4) and (7). Eqs. (9a) and (9b) may be 
multiplied with a common factor independent of #, v, r and if a constant in- 
dependent of #, v, q~ (but perhaps depending on E and P~o) is added to fl, it cancels 
when (9a) and (9b) are added to give Eq. (5). In fact, (9a) and (9b) realize a con- 
vention frequently used. 

We now replace OSo/O# = dS~/d# by p, and ~So/OV = dSz/dv by p in (9a) 
and (9b) respectively, then multiply (9a) with 1 -  v 2 and (9b) with 2-v(# 2 -  1). 
Adding and thus eliminating E, we finally obtain 

( # 2 - 1 ) ( 1 - v  2) (. 1 1 ) 
f i= ~----v T (p2_p2)+  # 2 ~ 1  1- -v  2 p2 

(lO) 
+ 2Ma2 (1 - v 2) Vx(#) - (#2 _ 1) V2(v ) 

#2 __ V2 



274 K. Hell'rich 

The first two terms of this expression (first line) are independent of the special 
potential chosen. 

Using the relations 

#2 + V2 - -  1 (#2 -- 1) (1 - v 2) 
C2 = (#~ ~ ]~ ~] -- ~2) p2 + -(#~2-- ~2~ (#Pu - vP~) z, (11) 

(#2 _ 1) (1 - v 2) 
Po = M~ = ,r(# 2 _  v2 ) ( # p , , -  vp~) (12) 

for the square of angular m o m e n t u m / ] = ~ x  ~ and the momentum pQ conjugate 
to Q = ] /x  2 + y2, we finally obtain 2 

P ~ /  (1 - v ~) v~(~)  - ( ~  - 1) V~(v) 
fl = _ L 2 _}_ a2  p2 + Q2 ] + 2 M ~  /25 _ v 2 

= _ L z + aZ(p2 + p2) + flpot. (13) 

The linear combination of two separable potential energies V, V' is again a 
separable potential V", so the domain of separable potentials is a function space. 
As the potential part flpot of fl is linear in V1 and V2, the process of constructing 
//pot : ['~ from V is a linear mapping of a function space { V} on a second function 
space {//pot}: 

c'-7-- c ~  
(c e IR). (14) 

V +  V ' =  V+ V' 

2. Let us now return to quantum mechanics. The Schr6dinger Eq. (4) separates 
with the ansatz 

Z(#, v, q~) = F(#) G(v) e i~'~~ (15) 

and gives 

0 
- 1) ~ + {h2( ,_~_p (p2 ~ - ~ - ) + 2 M a 2 ( V I ( # ) - e ( # 2 - 1 ) ) - A ' } F ( # )  (16a) 

m 2 

= 0  

h ~ - ~ (1 Ov + 1 - v - - - - - T  + 2M~r2(V2(v) - ~(1 - v2)) + A' a(v) (16b) 

-~-0.  

Note the similarity of (16) with (9). 
Now (16a) is multiplied with ( 1 -  v 2) G(v)e imo and (16b) is multiplied with 

_ (#2 _ 1) F(#) e imp. We add the results and thus eliminate e. Besides we replace 
0 2 

m 2 eimo by - - -  eim% use (15) and solve for the separation constant A'. ~q~Z 

2 Note that in [6], p. 180, p2 has to be replaced by p~ + pr 2. 
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The final result has the form 

a'~( = A'g (17) 
where 

h 2 _ v2 ) a 

(18) 
( 1 1 ) C ~2 (1--v2) Vl (//) -- (//2 --1) V2 (Y) 

-- h2 "//2 ~ 1 1 - v z ~ q- 2Mr /12 _ V z 

From the work done by Cordes [7] on separable partial differential equations 
it follows that the "separation operator" A ' ,  the eigenvalue of which is the separa- 
tion constant A', commutes with the Hamiltonian H. Therefore, as already 
Coulson [8] pointed out for a special case, the eigenvalue A' of A' has to be 
used as a further classifying property of a one-particle state besides of the corre- 
sponding irreducible representation of the spatial symmetry group and the corre- 
sponding one-electron energy e. A complete set of quantum mechanical constants 
of the motion which commute with each other is provided by L z, A ' ,  and (of 
course) H. 

A somewhat tedious calculat ion-  which has, in fact, already been performed 
by Erikson and Hill [9] for the special case of the two-centre Coulomb potential - 
gives the final result that 

A'=-L2-h2a2(~02 + 0~f2) + 2Mt72 (1-v2)Vl(kt)-(//2-1)/12 __ •2 V2(Y) 

(19) 
= -  L2- h2cr2 ( ~2 ~-~y2 ) 

where L a is the square of the angular momentum operator s Note that the 
classical constant of the motion fl (Eq. 13) is the precise classical analogue of 
the separation operator A j (Eq. 19). This must be the case as can be already seen 
by comparing Eqs. (10) and (18). 

3. We finally mention some special separable problems and their constants 
of the motion. 

i) The shape of an atomic nucleus may very well be described to be a prolate 
or oblate spheroid, especially in the case of rare earths [10]. The most simple 
and widely used one-particle model for nucleons is the spheroidal well model 

V = { -  Vo //=<#o (20) 
oo # > # o  

where # = #o is the surface of the nucleus. As a consequence, the Hamiltonian 
commutes with the separation operator 

A' = - L 2 + a2(p 2 + p2) _ 2Ma2 Vo (# _</to). (21) 

ii) The constant of the motion for the two-centre Coulomb potential 

V =- - Z 1 e E / r l  - Z 2 eE / r2  (22) 
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T a b l e  1 

P r o l a t e  s p h e r o i d a l  c o o r d i n a t e s  

r~ = 0 - ( / / +  v) r 2 = 0 - ( / / -  v) 

0 = 0-1//(//2 - 1) (1 - v 2 ) z=0"//v 

r 2 = 0"2(# 2 "~ 12 2 - -  1) 

S e p a r a b l e  p o t e n t i a l  
e n e r g y  

v~ (//) + V~(v) 
V 

//2 - -  3?2 v1 (//) v: (3?) 

C o n t r i b u t i o n  t o  
S e p a r a t i o n  o p e r a t o r  

(1 -3?2) VI(# ) _ ( / / 2  1) V2(v ) 

//2 - -  3?2 

1 1 

r l  0"(# + 3?) 

1 1 

rz  0"(~  - 3?) 

r z = 0 - 2 ( / / 2  + v 2 _ 1 )  

1 1 

# v 1 z 1 

0. G (7 r 1 

# v 1 z 2 

0. t7 0- r 2 

0"2],/2(# 2 - -  1) 0-2V2(1 - -  3?2) 02 

1 1 c o s  y 

r 1 �9 r 2 o'2(~t 2 - -  v 2) 2 0  -2 2 0  -2 2 0  -2 

1 1 1 1 1 - r2/0- 2 

02 IT2(~/2 -- 1) (1 - 3?2) 0"2(//2 _ 1) 0-2(1 - 3? 2) 02 

was analyzed by Erikson and Hill [9J and turned out to be 

A '  = - L 2 + a 2 ( p  2 + p2) _ 2 M e Z  a(Za c o s 0 1  _ Z 2 c o s 0 2 ) "  (23) 

Later on, Coulson and Joseph [-8] superposed the two-centre Coulomb potential 
and a harmonic oscillator potential kr2 :  

V = - Z 1 e2/r~ - Z 2 e2/r2 + k r 2 (24) 

The constant of the motion for this case, 

A I 2 2 2 2 = - L + tz (Px + Py) - 2 M e Z ~ ( Z 1  cos 01 - Z 2 cos 02) + 2 M t r Z k o  2 (25) 

is an outgrowth of the superposition of separable potentials according to Eqs. (13) 
and (19); details are to be found in Table 1. 

iii) The superposition of a two-centre Coulomb potential - Z 1 / r  1 - Z 2 / r  2 

and a potential - Q / ( r  1 r2) 

V - -  Z 1  Z 2  Q (26) 
r l  r 2  /'1 " / '2 

(atomic units in (26)) has found applications in the natural spin orbital analysis 
of small diatomic molecules [,-12]. The resulting constant of the motion is [11]: 

A t 2 2 2 2 -- = L  --t7 ( p x + p y ) + R ( Z l c o s O l - - Z 2 c o s O z ) + Q c o s ~  (27) 

where the third term comes from the two-centre Coulomb potential and the last 
one from Q/( r  1 �9 r2) (compare Table 1). 
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iv) Teller 1-13] recently suggested the use of a separable potential energy of 
the form 

V ~  a~176 + aa~ + a~ + a2~ § a~ 
# 2  - -  V2 (28) 

in an effective one-electron Schr6dinger equation for electrons in a diatomic 
molecule. It is more general than the potential energy (26) because of the quadratic 
t e r m s  a 2 o #  2 and a02 v2. Identifying 

VI(# ) = �89 -I- alO # § a2o# 2 
(29) 

V2(v ) = �89 § aolV § ao2 vz 
we get, according to (19), 

A , = _ L 2 h 2 a 2 (  82 J@) 
-~fxZ + (30) 

+ 2Ma2 (1 - v 2) (%o/2 + alo# + azo/l 2) + (/~2 _ 1) (%o/2 + aolV + ao2 v2) 
/2 2 - -  V 2 

It is, however, difficult to give a simple interpretation of this separation constant. 

Cylindrically Symmetrical Potentials Separable in Parabolic Coordinates 

1. Parabolic coordinates are as usually defined by 

~ = r + z  r l = r - z  ~p (31) 

and are related to (circular) cylinder coordinates Q, ~p, z by 

z - r  2 q~ = q~' (32) 

The most general cylindrically symmetrical potential energy V for which the 
Schr6dinger Eq. (3) separates in parabolic coordinates is of the form 

v~(r + v~(~) 
V(~, r/) - (33) 

r  

according to Eisenhart I-4] or Morse and Feshbach [5, p. 660]. 
Let us first construct a classical constant of the motion before treating the 

Schr6dinger Eq. (3) with the potential energy (33). The canonical momenta are 

0So 
pc= (r = ~r 

8So 
Pn = (4 § 11)0 - O t l  

0So p~= MCrl(o - 

The Hamilton-Jaeobi-equation separates with the ansatz 

So =p~ .  q, + s,(r + s2(tt) 
19 Theoret. chim. Acta (Berl.) Vol. 24 

(34) 

(35) 
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giving (according to Landau and Lifschitz [6, p. 177]) 
2 

2~p~+ ~ + M ( V I ( ~ ) -  E ~ ) =  fl 

(36) 2 

2qp~ + ~-~ + M(V2(r/) - Eq) = - ft. 

Eliminating E from Eq. (36), we obtain for fl: 

2~q ( p ~ , p ~ ) +  17- ~ 2 r lVI(O-~V2(r l )  (37) 

Only the last term of the right side of (37) depends on the potential energy (33). 
A short calculation shows that the first sum is equal to minus the z-component 

of the vector F• L, where ~ =  (L~,, Lr, Lz) is the angular momentum ~• p~. We 
therefore obtain 

n Vl (r - r V2(n) (38) fl = - (pxL r - pyLx) + M ~ + tl 

2. The Schr6dinger Eq. (3) for the potential energy (33) separates with the 
ansatz 

Z(~, q, r = X ( ~ )  Y(r/) e imp~ . (39) 

The separated equations are 

,40, 

We now repeat the calculation which led from Eqs. (16) to (17) and obtain from (40): 

AZ = AZ, (41) 

the separation operator A being equal to 

-2r /  r + 2r ~ - r /  + A -  ~+t/  201 ~o z 
(42) 

+ M  

Note that again this separation operator is the quantum mechanical analogue of 
the separation constant fl (Eq. (37)) for the Hamilton-Jacobi equation. 

A very tedious calculation (which is omitted) shows that the first term in (42) 
�9 is equal to the operator 

1 ~ 1 
Az : -~  (L3 jP j  -- p jL j3 )  : ~ -  (L31Pl  - P l  L13 '}- L32P2 - p2L23)  

j = l  (43) 
1 

= z(p 2 + p~) - ~ p,(p, ,x + xp~ + Ye t  + PrY) 
where 

L~j = xipj  - x~p~ 

is the antimetric tensor operator of angular momentum. 
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The operator A evidently is the quantum mechanical equivalent of the 
symmetrized classical expression (38). 

We therefore obtain the final result that the separation operator A is equal to 

A = A z + M (44) 
~ + n  

with A~ defined in Eq. (43). 
3. Again we mention some special separable potentials and the resulting 

constants of the motion. 
i) The potential energy 

Z e  2 2 Z e  2 
V -  - = (45) 

r ~+t t  

of a particle with mass M and charge - e  in the field of a positive charge Z e  

(Kepler problem) gives rise to the constant of motion 

2 Z 
f l  = - ( p x L r  - p r L x )  + M Z e  - -  (46) 

r 

after the identification VI(~) = V2(tl) = - Z e  2. 

This is the z-component of the famous Runge-Lenz vector 

- (~  x s  + M Z e  2 f -  (47) 
r 

pointing in the direction of the major axis of the Kepler ellipse. From (44) its 
quantum mechanical analogue is derived and turns out to be 

1 3 
A = - ~- ~ (pjLj3 - L 3 j p j )  + M Z e  2 z _ .  (48) 

j = l  r 

This is the z-component of the quantum mechanical Lenz-Pauli-vector. Its 
eigenvalue in the eigenstate I S T m )  with parabolic quantum numbers S, T, m is 
given by 

S - T  
A =  S +  T + [ m l +  l Z e 2 M  (49) 

according to Landau-Lifschitz [14, p. 133]. 
ii) If a homogeneous electric field with strength F in the direction of the 

positive z-axis is superimposed to the field of an atomic nucleus with charge Z e ,  

the resulting potential energy of an electron with charge - e is 

Z e  2 
- - -  + e F z .  (50) 

r 

The resulting constant of the motion now is 

Z M 2 
f l  = - ( p ~ L ,  - p r L ~ )  + M Z e  2 ~ + eFQ (51) T r 

in classical mechanics. 
19" 
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The quantum mechanical separation operator is, according to (44), (50), and 
Table 2 

3 M 2 
1 ~ (pjL~3 - L3jpj) + M Z e  2 z + - } -  eFQ . (52) 3 A -  2 j=l 

In Fig. 2, energy E and separation constant - A  of several excited states of (50) 
with Z = 1 are given as a function of the electric field strength F. The method of 
calculation used was the reduction of the system of two differential eigenvalue 
Eqs. (40) to a system of two coupled algebraic eigenvalue equations. This system 
was subjected to a Newton-Raphson-procedure described in the appendix of [15]. 

Two features of Fig. 2 are essential. 
1) - A  is a slowly decreasing, almost linear function of F which is well ap- 

proximated by the expectation value 

T - S  1 
( S T m l - A  [STm)= S +  T +  [rn[ + 1 2 F(STm[o2ISTm) (53) 

calculated with parabolic hydrogenic functions ]STm). These functions have 
recently been given as linear combinations of spherical hydrogenic functions 
[nlm) [16a, b]. 

2) The state 1040) of type o + (C~o~) crosses the states [300), 1210), and [120) 
of equal type o -+ (C~o~) with regard to energy. This is no violation of the non- 
crossing rule since the full symmetry C| x {A} of (50) has to be taken into account 
and a complete classification is given by (7, A) where 7 is an irreducible represen- 
tation of C ~  and A the separation constant. The values of the separation con- 
stant A for all these states are well separated. 

iii) We finally mention the problem 

fi2 C 
{ - ~ - - ~ A - e 2 Z / r + - ~ } ) ~ = ~ ) ~  ( 0 2 = x 2 + y  2) (54) 

recently solved by Har tmann [17]. 
(54) is separable both in spherical and in parabolic coordinates. Separability 

in spherical coordinates 
constants of motion 

and spatial cylinder symmetry give rise to the two 

2MC 
L 2 + - -  (55a) 

sin a 0 ' 

h 
L. = y ~ - .  (55b) 

Separability in parabolic coordinates comes from the fact that 

1 1 + 
1 1 ~ 

. . . .  (56) 
e2 ~.~ r  

3 For another derivation of the Stark-effect generalization of the Lenz-Pauli-vector see: Redmond, 
P.J.: Physic. Rev. 133 B, 1352 (1964). 
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Circular parabolic coordinates 

r  t l = r - z  99 

0 2 = 4rl 

Separable potential 
energy 

1/1 (4) 4- V2(?/) 
V =  v~(4) v:(~) 

Contribution to 
separation operator 

V, (4) - ~ V~(~) 

1 z 
- -  1 1 

?" r 

Z 0 2 

~2 ?/2 02 
2 - -  

2 2 2 

1 1 1 2z 
0 2 ~ /7 0 2 

-A 

1 ~ 0 4 0  ~ 

030 

120 

210 

300  

-1 

E [~] _~ Ep~ =-I+Fz 
- 0 . 02  

- 0.03 

- 0.04 0,5 1,0 1.5 2.0 x 106 V lcm 

- -  I II Ir I1 ~ F 
1 2 3 4. • 

Fig. 2. Energy F and separation constant  A as functions of electric field strength F for several electronic 
1 

states S TO of type a + (m = 0). The operator of potential energy is - - -  + F z  
r 
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According to (44) and Table 2, it gives rise to the additional third constant of 
motion 

1 3 2z 
A - 2 ~ (PjLi3 - LajPJ) + M Z e 2  z _ M C  Q2 (55c) 

j = l  r 

So the number of independent constants of the motion is even greater than in 
the Stark effect problem ii) and equal to the corresponding number in the Zeeman 
effect problem. 

All numerical calculations have been performed on the CD 6600 of Regionales Rechenzentrum 
Stuttgart and on the TR 440 of Deutsches Rechenzentrum Darmstadt. The author thanks the Deutsche 
Forschungsgemeinschaft for paying computer time. 
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